ACM Computing Surveys, 2023
Weihao Xia ·
Jing-Hao
Xue
This project lists representative papers/codes/datasets about deep 3D-aware image synthesis. Besides 3D-aware Generative Models (GANs and Diffusion Models) discussed in this survey, this project additionally covers novel view synthesis studies, especially those based on implicit neural representations such as NeRF.
We aim to constantly update the latest relevant papers and help the community track this topic. Please feel free to join us and contribute to the project. Please do not hesitate to reach out if you have any questions or suggestions.
For 3D control over diffusion models simiar to GAN, please refer to diffusion latent editing.
SeFa: Closed-Form Factorization of Latent Semantics in
GANs.
Yujun Shen, Bolei Zhou.
CVPR 2021. [Paper] [Project] [Code]
GANSpace: Discovering Interpretable GAN
Controls.
Erik Härkönen, Aaron Hertzmann, Jaakko
Lehtinen, Sylvain Paris.
NeurIPS 2020. [Paper] [Code]
Interpreting the Latent Space of GANs for Semantic Face
Editing.
Yujun
Shen, Jinjin Gu, Xiaoou Tang, Bolei Zhou.
CVPR 2020.
[Paper] [Project] [Code]
Unsupervised Discovery of Interpretable Directions in the
GAN Latent Space.
Andrey Voynov, Artem
Babenko.
ICML 2020. [Paper] [Code]
On the “steerability” of generative adversarial
networks.
Ali Jahanian, Lucy Chai, Phillip
Isola.
ICLR 2020. [Paper] [Project] [Code]
3D-FM GAN: Towards 3D-Controllable Face
Manipulation.
Yuchen Liu, Zhixin Shu, Yijun
Li, Zhe Lin, Richard Zhang, and Sun-Yuan Kung.
ECCV 2022. [Paper] [Project]
GAN-Control: Explicitly Controllable GANs.
Alon Shoshan, Nadav Bhonker, Igor Kviatkovsky, Gerard
Medioni.
ICCV 2021. [Paper] [Project] [Code]
CONFIG: Controllable Neural Face Image
Generation.
Marek Kowalski, Stephan J. Garbin, Virginia
Estellers, Tadas Baltrušaitis, Matthew Johnson, Jamie Shotton.
ECCV 2020. [Paper] [Code]
DiscoFaceGAN: Disentangled and Controllable Face Image
Generation via 3D Imitative-Contrastive Learning.
Yu
Deng, Jiaolong Yang, Dong Chen, Fang Wen, Xin Tong.
CVPR 2020.
[Paper] [Code]
StyleRig: Rigging StyleGAN for 3D Control over Portrait
Images.
Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj,
Florian Bernard, Hans-Peter Seidel, Patrick Pérez, Michael Zollhöfer,
Christian Theobalt.
CVPR 2020 (oral). [Paper] [Project]
PIE: Portrait Image Embedding for Semantic
Control.
Ayush Tewari, Mohamed
Elgharib, Mallikarjun B R., Florian Bernard, Hans-Peter Seidel, Patrick
Pérez, Michael Zollhöfer, Christian Theobalt.
TOG (SIGGRAPH
Asia) 2020. [Paper]
[Project]
3D-Aware Indoor Scene Synthesis with Depth
Priors.
Zifan Shi, Yujun Shen, Jiapeng Zhu, Dit-Yan
Yeung, Qifeng Chen.
ECCV 2022 (oral). [Paper] [Project] [Code]
NGP: Towards a Neural Graphics Pipeline for Controllable
Image Generation.
Xuelin Chen, Daniel Cohen-Or, Baoquan
Chen, Niloy J. Mitra.
Eurographics 2021. [Paper] [Code]
Lifting 2D StyleGAN for 3D-Aware Face
Generation.
Yichun Shi, Divyansh Aggarwal, Anil K. Jain.
CVPR
2021. [Paper] [Code]
RGBD-GAN: Unsupervised 3D Representation Learning From
Natural Image Datasets via RGBD Image Synthesis.
Atsuhiro Noguchi, Tatsuya Harada.
ICLR 2020. [Paper] [Code]
Visual Object Networks: Image Generation with
Disentangled 3D Representation.
Jun-Yan Zhu, Zhoutong
Zhang, Chengkai Zhang, Jiajun Wu, Antonio Torralba, Joshua B. Tenenbaum,
William T. Freeman.
NeurIPS 2018. [Paper] [Project] [Code]
3D Shape Induction from 2D Views of Multiple
Objects.
Matheus Gadelha, Subhransu Maji, Rui
Wang.
3DV 2017. [Paper] [Project] [Code]
Generative Image Modeling using Style and Structure
Adversarial Networks.
Xiaolong Wang, Abhinav
Gupta.
ECCV 2016. [Paper] [Project] [Code]
BallGAN: 3D-aware Image Synthesis with a Spherical
Background.
Minjung Shin, Yunji Seo, Jeongmin Bae,
Young Sun Choi, Hyunsu Kim, Hyeran Byun, Youngjung Uh.
ICCV
2023. [Paper] [Project] [Code]
Mimic3D: Thriving 3D-Aware GANs via 3D-to-2D
Imitation.
Xingyu Chen, Yu Deng, Baoyuan Wang.
ICCV 2023. [Paper] [Project]
GRAM-HD: 3D-Consistent Image Generation at High
Resolution with Generative Radiance Manifolds.
Jianfeng
Xiang, Jiaolong Yang, Yu Deng, Xin Tong.
ICCV 2023. [Paper] [Project]
Live 3D Portrait: Real-Time Radiance Fields for
Single-Image Portrait View Synthesis.
Alex Trevithick,
Matthew Chan, Michael Stengel, Eric R. Chan, Chao Liu, Zhiding Yu, Sameh
Khamis, Manmohan Chandraker, Ravi Ramamoorthi, Koki Nagano.
TOG
(SIGGRAPH) 2023. [Paper]
[Project]
VoxGRAF: Fast 3D-Aware Image Synthesis with Sparse Voxel
Grids.
Katja Schwarz, Axel Sauer, Michael Niemeyer,
Yiyi Liao, Andreas Geiger.
NeurIPS 2022. [Paper] [Code]
GeoD: Improving 3D-aware Image Synthesis with A
Geometry-aware Discriminator.
Zifan Shi, Yinghao Xu,
Yujun Shen, Deli Zhao, Qifeng Chen, Dit-Yan Yeung.
NeurIPS
2022. [Paper] [Project]
EpiGRAF: Rethinking training of 3D GANs.
Ivan Skorokhodov, Sergey Tulyakov, Yiqun Wang, Peter Wonka.
NeurIPS 2022.
[Paper] [Project] [Code]
VoxGRAF: Fast 3D-Aware Image Synthesis with Sparse Voxel
Grids.
Schwarz, Katja, Sauer, Axel, Niemeyer, Michael,
Liao, Yiyi, and Geiger, Andreas.
NeurIPS 2022. [Paper] [Project]
Injecting 3D Perception of Controllable NeRF-GAN into
StyleGAN for Editable Portrait Image Synthesis.
Jeong-gi Kwak, Yuanming Li, Dongsik Yoon, Donghyeon Kim, David Han,
Hanseok Ko.
ECCV 2022. [Paper] [Project] [Code]
Generative Multiplane Images: Making a 2D GAN
3D-Aware.
Xiaoming
Zhao, Fangchang Ma, David
Güera, Zhile Ren, Alexander G. Schwing, Alex Colburn.
ECCV 2022.
[Paper] [Project] [Code]
3D-FM GAN: Towards 3D-Controllable Face
Manipulation.
Yuchen Liu, Zhixin Shu, Yijun
Li, Zhe Lin, Richard Zhang, and Sun-Yuan Kung.
ECCV 2022. [Paper] [Project]
EG3D: Efficient Geometry-aware 3D Generative Adversarial
Networks.
Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De
Mello, Orazio Gallo, Leonidas Guibas,
Jonathan
Tremblay, Sameh Khamis,
Tero
Karras, Gordon
Wetzstein.
CVPR 2022. [Paper] [Project] [Code]
StylizedNeRF: Consistent 3D Scene Stylization as Stylized
NeRF via 2D-3D Mutual Learning.
Yi-Hua Huang, Yue He,
Yu-Jie Yuan, Yu-Kun Lai, Lin Gao.
CVPR 2022. [Paper]
Multi-View Consistent Generative Adversarial Networks for
3D-aware Image Synthesis.
Xuanmeng Zhang, Zhedong
Zheng, Daiheng Gao, Bang Zhang, Pan Pan, Yi Yang.
CVPR 2022.
[Paper] [Code]
Disentangled3D: Learning a 3D Generative Model with
Disentangled Geometry and Appearance from Monocular Images.
Ayush Tewari, Mallikarjun B
R, Xingang Pan, Ohad Fried, Maneesh Agrawala, Christian
Theobalt.
CVPR 2022. [Paper]
[Project]
GIRAFFE HD: A High-Resolution 3D-aware Generative
Model.
Yang Xue, Yuheng Li, Krishna Kumar Singh, Yong
Jae Lee.
CVPR 2022. [Paper] [Code]
StyleSDF: High-Resolution 3D-Consistent Image and
Geometry Generation.
Roy Or-El, Xuan Luo, Mengyi Shan, Eli
Shechtman, Jeong Joon Park, Ira Kemelmacher-Shlizerman.
CVPR
2022. [Paper] [Project] [Code]
FENeRF: Face Editing in Neural Radiance
Fields.
Jingxiang Sun, Xuan Wang, Yong Zhang, Xiaoyu
Li, Qi Zhang, Yebin Liu, Jue Wang.
CVPR 2022. [Paper] [Code]
LOLNeRF: Learn from One Look.
Daniel Rebain, Mark Matthews,
Kwang Moo Yi, Dmitry Lagun, Andrea Tagliasacchi.
CVPR 2022. [Paper] [Project]
GRAM: Generative Radiance Manifolds for 3D-Aware Image
Generation.
Yu
Deng, Jiaolong Yang, Jianfeng Xiang, Xin
Tong.
CVPR 2022. [Paper] [Project] [Code]
VolumeGAN: 3D-aware Image Synthesis via Learning
Structural and Textural Representations.
Yinghao Xu,
Sida Peng, Ceyuan Yang, Yujun Shen, Bolei Zhou.
CVPR 2022. [Paper] [Project] [Code]
Generating Videos with Dynamics-aware Implicit Generative
Adversarial Networks.
Sihyun Yu, Jihoon Tack, Sangwoo
Mo, Hyunsu Kim, Junho Kim, Jung-Woo Ha, Jinwoo Shin.
ICLR 2022.
[Paper] [Project] [Code]
StyleNeRF: A Style-based 3D-Aware Generator for
High-resolution Image Synthesis.
Jiatao Gu, Lingjie Liu, Peng Wang, Christian
Theobalt.
ICLR 2022. [Paper] [Project]
MOST-GAN: 3D Morphable StyleGAN for Disentangled Face
Image Manipulation.
Safa C. Medin, Bernhard Egger,
Anoop Cherian, Ye Wang, Joshua B. Tenenbaum, Xiaoming Liu, Tim K.
Marks.
AAAI 2022. [Paper]
A Shading-Guided Generative Implicit Model for
Shape-Accurate 3D-Aware Image Synthesis.
Xingang Pan,
Xudong Xu, Chen Change Loy, Christian Theobalt, Bo Dai.
NeurIPS
2021. [Paper]
pi-GAN: Periodic Implicit Generative Adversarial Networks
for 3D-Aware Image Synthesis.
Eric R. Chan, Marco
Monteiro, Petr Kellnhofer, Jiajun Wu, Gordon Wetzstein.
CVPR 2021. [Paper] [Project] [Code]
GIRAFFE: Representing Scenes as Compositional Generative
Neural Feature Fields.
Michael Niemeyer, Andreas
Geiger.
CVPR 2021 (Best Paper). [Paper] [Project]
[Code]
BlockGAN: Learning 3D Object-aware Scene Representations
from Unlabelled Images.
Thu Nguyen-Phuoc, Christian
Richardt, Long Mai, Yong-Liang Yang, Niloy Mitra.
NeurIPS 2020.
[Paper] [Project] [Code]
GRAF: Generative Radiance Fields for 3D-Aware Image
Synthesis.
Katja Schwarz, Yiyi Liao, Michael Niemeyer, Andreas Geiger.
NeurIPS 2020.
[Paper] [Project]
[Code]
HoloGAN: Unsupervised learning of 3D representations from
natural images.
Thu Nguyen-Phuoc, Chuan Li, Lucas
Theis, Christian Richardt, Yong-liang Yang.
ICCV
2019. [Paper] [Project]
[Code]
3D-aware Conditional Image Synthesis.
Kangle Deng, Gengshan Yang, Deva Ramanan, Jun-Yan Zhu.
CVPR
2023. [Paper] [Project] [Code]
Sem2NeRF: Converting Single-View Semantic Masks to Neural
Radiance Fields.
Yuedong Chen, Qianyi Wu, Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai.
ECCV
2022. [Paper] [Project] [Code]
IDE-3D: Interactive Disentangled Editing for
High-Resolution 3D-aware Portrait Synthesis.
Jingxiang Sun, Xuan Wang, Yichun Shi, Lizhen Wang, Jue Wang, Yebin Liu.
SIGGRAPH Asia 2022.
[Paper] [Project] [Code]
NeRFFaceEditing: Disentangled Face Editing in Neural
Radiance Fields.
Kaiwen Jiang, Shu-Yu Chen, Feng-Lin Liu, Hongbo Fu, Lin Gao.
SIGGRAPH Asia 2022. [Paper] [Project]
GANcraft: Unsupervised 3D Neural Rendering of Minecraft
Worlds.
Zekun Hao, Arun Mallya, Serge Belongie, Ming-Yu
Liu.
ICCV 2021. [Paper] [Project] [Code]
Generating Images with 3D Annotations Using Diffusion
Models.
Wufei
Ma, Qihao Liu, Jiahao Wang, Angtian Wang,
Xiaoding Yuan, Yi Zhang, Zihao Xiao, Guofeng Zhang, Beijia Lu, Ruxiao
Duan, Yongrui Qi, Adam
Kortylewski, Yaoyao
Liu, Alan
Yuille.
ICLR 2024. [Paper] [Project] [Code]
GeNVS: Generative Novel View Synthesis with 3D-Aware
Diffusion Models.
Eric R. Chan, Koki Nagano, Matthew A.
Chan, Alexander W. Bergman, Jeong Joon Park, Axel Levy, Miika Aittala,
Shalini De Mello, Tero Karras, Gordon Wetzstein.
ICCV 2023. [Paper] [Project] [Code]
Single-Stage Diffusion NeRF: A Unified Approach to 3D
Generation and Reconstruction.
Hansheng Chen, Jiatao
Gu, Anpei Chen, Wei Tian, Zhuowen Tu, Lingjie Liu, Hao Su.
ICCV
2023. [PDF] [Project] [Code]
3D-aware Image Generation using 2D Diffusion
Models.
Jianfeng Xiang, Jiaolong
Yang, Binbin Huang, Xin Tong.
ICCV 2023. [Paper] [Project] [Code]
HoloFusion: Towards Photo-realistic 3D Generative
Modeling.
Animesh Karnewar, Niloy J. Mitra, Andrea
Vedaldi, David Novotny.
ICCV 2023. [Paper] [Project]
HyperDiffusion: Generating Implicit Neural Fields with
Weight-Space Diffusion.
Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias
Nießner, Angela
Dai.
ICCV 2023. [Paper] [Project]
LatentSwap3D: Semantic Edits on 3D Image
GANs.
Enis Simsar, Alessio Tonioni, Evin Pınar Örnek,
Federico Tombari.
ICCV 2023 Workshop on AI3DCC. [Paper]
DiffusioNeRF: Regularizing Neural Radiance Fields with
Denoising Diffusion Models.
Jamie
Wynn and Daniyar
Turmukhambetov.
CVPR 2023. [Paper] [Supplementary
material] [COde]
NeuralField-LDM: Scene Generation with Hierarchical
Latent Diffusion Models.
Seung Wook Kim, Bradley Brown,
Kangxue Yin, Karsten Kreis, Katja Schwarz, Daiqing Li, Robin Rombach,
Antonio Torralba, Sanja Fidler.
CVPR 2023. [Paper] [Project]
Rodin: A Generative Model for Sculpting 3D Digital
Avatars Using Diffusion.
Tengfei Wang, Bo Zhang, Ting
Zhang, Shuyang Gu, Jianmin Bao, Tadas Baltrusaitis, Jingjing Shen, Dong
Chen, Fang Wen, Qifeng Chen, Baining Guo.
CVPR 2023. [Paper] [Project]
DiffRF: Rendering-guided 3D Radiance Field
Diffusion.
Norman
Müller, Yawar
Siddiqui, Lorenzo
Porzi, Samuel
Rota Bulò, Peter
Kontschieder, Matthias
Nießner.
CVPR 2023 (Highlight). [Paper] [Project]
RenderDiffusion: Image Diffusion for 3D Reconstruction,
Inpainting and Generation.
Titas Anciukevičius, Zexiang
Xu, Matthew Fisher, Paul Henderson, Hakan Bilen, Niloy J. Mitra, Paul
Guerrero.
CVPR 2023. [Paper] [Project] [Code]
SparseFusion: Distilling View-conditioned Diffusion for
3D Reconstruction.
Zhizhuo Zhou, Shubham Tulsiani.
CVPR
2023. [Paper] [Project] [Code]
HoloDiffusion: Training a 3D Diffusion Model using 2D
Images.
Animesh Karnewar, Andrea Vedaldi, David
Novotny, Niloy Mitra.
CVPR 2023. [Paper] [Project]
3DiM: Novel View Synthesis with Diffusion
Models.
Daniel Watson, William Chan, Ricardo
Martin-Brualla, Jonathan Ho, Andrea Tagliasacchi, Mohammad
Norouzi.
ICLR 2023. [Paper] [Project]
3DShape2VecSet: A 3D Shape Representation for Neural
Fields and Generative Diffusion Models.
Biao Zhang, Jiapeng Tang, Matthias Niessner, Peter Wonka.
SIGGRAPH 2023.
[Paper] [Project] [Code]
GAUDI: A Neural Architect for Immersive 3D Scene
Generation.
Miguel Angel Bautista, Pengsheng Guo,
Samira Abnar, Walter Talbott, Alexander Toshev, Zhuoyuan Chen, Laurent
Dinh, Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht, Afshin Dehghan, Josh
Susskind.
NeurIPS 2022. [Paper] [Project]
Learning a Diffusion Prior for NeRFs.
Guandao Yang, Abhijit Kundu, Leonidas J. Guibas, Jonathan T. Barron,
Ben Poole.
arxiv 2023. [Paper]
3D-LDM: Neural Implicit 3D Shape Generation with Latent
Diffusion Models.
Gimin Nam, Mariem Khlifi, Andrew
Rodriguez, Alberto Tono, Linqi Zhou, Paul Guerrero.
arxiv 2022.
[Paper]
VQ3D: Learning a 3D-Aware Generative Model on
ImageNet.
Kyle Sargent, Jing Yu Koh, Han Zhang, Huiwen
Chang, Charles Herrmann, Pratul Srinivasan, Jiajun Wu, Deqing
Sun.
ICCV 2023 (Oral). [Paper] [Project]
3D Generation on ImageNet.
Ivan
Skorokhodov, Aliaksandr Siarohin, Yinghao Xu, Jian Ren, Hsin-Ying Lee,
Peter Wonka, Sergey Tulyakov.
ICLR 2023 (Oral). [Paper] [Project] [Code]
3D-Aware Video Generation.
Sherwin Bahmani, Jeong Joon Park, Despoina Paschalidou, Hao
Tang, Gordon
Wetzstein, Leonidas Guibas,
Luc
Van Gool, Radu
Timofte.
TMLR 2023. [Paper] [Project] [Code]
Streaming Radiance Fields for 3D Video
Synthesis.
Lingzhi Li, Zhen Shen, Zhongshu Wang, Li
Shen, Ping Tan.
NeurIPS 2022. [Paper] [Code]
Scene Representation Transformer: Geometry-Free Novel
View Synthesis Through Set-Latent Scene Representations.
Mehdi S. M. Sajjadi, Henning Meyer, Etienne Pot, Urs Bergmann, Klaus
Greff, Noha Radwan, Suhani Vora, Mario Lucic, Daniel Duckworth, Alexey
Dosovitskiy, Jakob Uszkoreit, Thomas Funkhouser, Andrea
Tagliasacchi.
CVPR 2022. [Paper] [Project] [Code]
Light Field Networks: Neural Scene Representations with
Single-Evaluation Rendering.
Vincent Sitzmann, Semon
Rezchikov, William T. Freeman, Joshua B. Tenenbaum, Fredo
Durand.
NeurIPS 2021 (Spotlight). [Paper] [Project] [Code]
Mip-NeRF: A Multiscale Representation for Anti-Aliasing
Neural Radiance Fields.
Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, Pratul P.
Srinivasan.
ICCV 2021. [Paper] [Project] [Github]
NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis.
Ben Mildenhall, Pratul P.
Srinivasan, Matthew
Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren
Ng.
ECCV 2020. [Paper] [Project] [Gtihub-Tensorflow] [krrish94-PyTorch]
[yenchenlin-PyTorch]
Differentiable Volumetric Rendering: Learning Implicit 3D
Representations without 3D Supervision.
Michael
Niemeyer, Lars Mescheder, Michael Oechsle, Andreas Geiger.
CVPR
2020. [Paper]
[Code]
Scene Representation Networks: Continuous
3D-Structure-Aware Neural Scene Representations.
Vincent Sitzmann, Michael
Zollhöfer, Gordon Wetzstein.
NeurIPS 2019 (Oral, Honorable
Mention “Outstanding New Directions”). [Paper] [Project]
[Code]
[Dataset]
LLFF: Local Light Field Fusion: Practical View Synthesis
with Prescriptive Sampling Guidelines.
Ben Mildenhall,
Pratul Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi
Ramamoorthi, Ren Ng, Abhishek Kar.
SIGGRAPH 2019. [Paper] [Project] [Code]
DeepVoxels: Learning Persistent 3D Feature
Embeddings.
Vincent Sitzmann, Justus Thies, Felix
Heide, Matthias Nießner, Gordon Wetzstein, Michael Zollhöfer.
CVPR 2019 (Oral). [Paper]
[Project] [Code]
Instant Neural Graphics Primitives with a Multiresolution
Hash Encoding.
Thomas
Müller, Alex
Evans, Christoph
Schied, Alexander
Keller.
SIGGRAPH (TOG) 2022. [Paper]
[Project] [Code]
DIVeR: Real-time and Accurate Neural Radiance Fields with
Deterministic Integration for Volume Rendering.
Liwen Wu, Jae Yong Lee, Anand Bhattad, Yuxiong Wang, David A. Forsyth.
CVPR 2022. [Paper] [Project] [Code]
KiloNeRF: Speeding up Neural Radiance Fields with
Thousands of Tiny MLPs.
Christian Reiser, Songyou Peng,
Yiyi Liao, Andreas Geiger.
ICCV 2021. [Paper] [Code]
FastNeRF: High-Fidelity Neural Rendering at
200FPS.
Stephan J. Garbin, Marek Kowalski, Matthew
Johnson, Jamie Shotton, Julien Valentin.
ICCV 2021. [Paper]
PlenOctrees for Real-time Rendering of Neural Radiance
Fields.
Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren
Ng, Angjoo
Kanazawa.
ICCV 2021. [Paper] [Project] [Code]
Baking Neural Radiance Fields for Real-Time View
Synthesis.
Peter
Hedman, Pratul P.
Srinivasan, Ben Mildenhall,
Jonathan T. Barron, Paul Debevec.
ICCV 2021
(oral). [Paper] [Project] [Code]
AutoInt: Automatic Integration for Fast Neural Volume
Rendering.
David B. Lindell, Julien N. P. Martel,
Gordon Wetzstein.
CVPR 2021 (oral). [Paper] [Project]
[Code]
NSVF: Neural Sparse Voxel Fields.
Lingjie Liu, Jiatao Gu, Kyaw
Zaw Lin, Tat-Seng Chua, Christian Theobalt.
NeurIPS 2020. [Paper] [Project] [Code]
GRF: Learning a General Radiance Field for 3D
Representation and Rendering.
Alex Trevithick, Bo
Yang.
ICCV 2021. [Paper]
[Code]
MVSNeRF: Fast Generalizable Radiance Field Reconstruction
from Multi-View Stereo.
Anpei Chen, Zexiang Xu, Fuqiang Zhao,
Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, Hao Su.
ICCV 2021.
[Paper] [Project] [Code]
CodeNeRF: Disentangled Neural Radiance Fields for Object
Categories.
Wonbong Jang, Lourdes Agapito.
ICCV 2021. [Paper] [Project]
[Code]
pixelNeRF: Neural Radiance Fields from One or Few
Images.
Alex Yu,
Vickie Ye, Matthew Tancik, Angjoo Kanazawa.
CVPR 2021. [Paper] [Project] [Code]
IBRNet: Learning Multi-View Image-Based
Rendering.
Qianqian Wang, Zhicheng Wang, Kyle Genova,
Pratul Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo
Martin-Brualla, Noah Snavely, Thomas Funkhouser.
CVPR 2021. [Paper] [Project] [Code]
NeRF-VAE: A Geometry Aware 3D Scene Generative
Model.
Adam R. Kosiorek, Heiko Strathmann, Daniel
Zoran, Pol Moreno, Rosalia Schneider, Soňa Mokrá, Danilo J.
Rezende.
ICML 2021. [Paper]
Self-Calibrating Neural Radiance Fields.
Yoonwoo Jeong, Seokjun Ahn, Christopher Choy, Animashree Anandkumar,
Minsu Cho, Jaesik Park.
ICCV 2021. [Paper] [Project] [Code]
BARF: Bundle-Adjusting Neural Radiance
Fields.
Chen-Hsuan Lin, Wei-Chiu Ma, Antonio
Torralba, Simon Lucey.
ICCV 2021. [Paper] [Code]
NeRF–: Neural Radiance Fields Without Known Camera
Parameters.
Zirui
Wang, Shangzhe Wu, Weidi Xie,
Min Chen, Victor Adrian
Prisacariu.
arxiv 2021. [Paper] [Project] [Code]
NeRFReN: Neural Radiance Fields with
Reflections.
Yuan-Chen Guo, Di Kang, Linchao Bao, Yu
He, Song-Hai Zhang.
CVPR 2022. [Paper]
[[Project](https://bennyguo.github.io/nerfren/]
NeRF in the Wild: Neural Radiance Fields for
Unconstrained Photo Collections.
Ricardo Martin-Brualla,
Noha
Radwan, Mehdi S. M.
Sajjadi, Jonathan T. Barron,
Alexey
Dosovitskiy, Daniel
Duckworth.
CVPR 2021 (oral). [Paper] [Code]
Grid-guided Neural Radiance Fields for Large Urban
Scenes.
Linning Xu, Yuanbo Xiangli, Sida Peng, Xingang
Pan, Nanxuan Zhao, Christian Theobalt, Bo Dai, Dahua Lin.
CVPR
2023. [Paper] [Project]
S3-NeRF: Neural Reflectance Field from Shading and Shadow
under a Single Viewpoint.
Wenqi Yang, Guanying Chen, Chaofeng Chen, Zhenfang Chen, Kwan-Yee K. Wong.
NeurIPS 2022. [Paper] [Project]
BungeeNeRF: Progressive Neural Radiance Field for Extreme
Multi-scale Scene Rendering.
Yuanbo Xiangli, Linning
Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai,
Dahua Lin.
ECCV 2022. [Paper] [Project]
Block-NeRF: Scalable Large Scene Neural View
Synthesis.
Matthew Tancik, Vincent Casser, Xinchen Yan,
Sabeek Pradhan, Ben Mildenhall, Pratul P. Srinivasan, Jonathan T.
Barron, Henrik Kretzschmar.
CVPR 2022. [Paper] [Project]
Urban Radiance Fields.
Konstantinos Rematas, Andrew Liu,
Pratul P. Srinivasan, Jonathan T. Barron, Andrea Tagliasacchi, Thomas
Funkhouser, Vittorio Ferrari.
CVPR 2022. [Paper] [Project]
Mega-NERF: Scalable Construction of Large-Scale NeRFs for
Virtual Fly-Throughs.
Haithem Turki, Deva Ramanan,
Mahadev Satyanarayanan.
CVPR 2022. [Paper]
[Code]
Shadow Neural Radiance Fields for Multi-view Satellite
Photogrammetry.
Dawa Derksen, Dario Izzo.
CVPR
2021. [Paper] [Code]
NeRFPlayer: A Streamable Dynamic Scene Representation
with Decomposed Neural Radiance Fields.
Liangchen Song,
Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong Yuan, Yi Xu,
Andreas Geiger.
TVCG 2023. [Paper] [Project]
Generative Deformable Radiance Fields for Disentangled
Image Synthesis of Topology-Varying Objects.
Ziyu Wang,
Yu Deng, Jiaolong Yang, Jingyi Yu, Xin Tong.
Pacific Graphics
2022. [Paper] [Code]
Neural Surface Reconstruction of Dynamic Scenes with
Monocular RGB-D Camera.
Hongrui Cai, Wanquan Feng, Xuetao
Feng, Yan Wang, Juyong Zhang.
NeurIPS 2022. [Paper] [Project] [Code]
LoRD: Local 4D Implicit Representation for High-Fidelity
Dynamic Human Modeling.
Boyan Jiang, Xinlin Ren,
Mingsong Dou, Xiangyang Xue, Yanwei Fu, Yinda Zhang.
ECCV 2022.
[Paper] [Code]
Fourier PlenOctrees for Dynamic Radiance Field Rendering
in Real-time.
Liao Wang, Jiakai Zhang, Xinhang Liu,
Fuqiang Zhao, Yanshun Zhang, Yingliang Zhang, Minye Wu, Lan Xu, Jingyi
Yu.
CVPR 2022 (Oral). [Paper] [Project]
CoNeRF: Controllable Neural Radiance Fields.
Kacper Kania, Kwang Moo Yi, Marek Kowalski, Tomasz Trzciński, Andrea
Taliasacchi.
CVPR 2022. [Paper] [Project]
Non-Rigid Neural Radiance Fields: Reconstruction and
Novel View Synthesis of a Deforming Scene from Monocular
Video.
Edgar Tretschk, Ayush Tewari, Vladislav
Golyanik, Michael Zollhöfer, Christoph Lassner, Christian
Theobalt.
ICCV 2021. [Paper] [Project]
[Code]
NeRFlow: Neural Radiance Flow for 4D View Synthesis and
Video Processing.
Yilun Du, Yinan Zhang, Hong-Xing Yu,
Joshua B. Tenenbaum, Jiajun Wu.
ICCV 2021. [Paper] [Project]
Nerfies: Deformable Neural Radiance Fields.
Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman, Steven M. Seitz, Ricardo-Martin
Brualla.
ICCV 2021. [Paper] [Project] [Code]
D-NeRF: Neural Radiance Fields for Dynamic
Scenes.
Albert Pumarola, Enric Corona, Gerard Pons-Moll, Francesc
Moreno-Noguer.
CVPR 2021. [Paper] [Project]
[Code] [Data]
Dynamic Neural Radiance Fields for Monocular 4D Facial
Avatar Reconstruction.
Guy Gafni, Justus Thies, Michael
Zollhöfer, Matthias Nießner.
CVPR 2021. [Paper] [Project] [Video]
NSFF: Neural Scene Flow Fields for Space-Time View
Synthesis of Dynamic Scenes.
Zhengqi Li, Simon Niklaus, Noah Snavely, Oliver
Wang.
CVPR 2021. [Paper] [Project] [Code]
Space-time Neural Irradiance Fields for Free-Viewpoint
Video.
Wenqi Xian, Jia-Bin Huang, Johannes Kopf, Changil Kim.
CVPR 2021. [Paper] [Project]
The following papers are not directly related to 3D-aware image synthesis. But it would be beneficial to pay attention to those works. For example, in our survey, inverse rendering are not classified as 3D-aware image synthesis as they are not deliberately designed for this purpose. But with the inferred intrinsic components, photorealistic images can be rendered. 3D reconstruction models geometry only with no appearance information, meaning them not able to render images with photorealistic textures. But these representations have been introduced as the geometric representation along with a textural representation (e.g., Texture Field) for 3D-aware image synthesis.
K-Planes: Explicit Radiance Fields in Space, Time, and
Appearance.
Sara Fridovich-Keil,
Giacomo
Meanti, Frederik
Warburg, Benjamin Recht, Angjoo
Kanazawa.
CVPR 2023. [Paper] [Project] [Code]
HexPlane: A Fast Representation for Dynamic
Scenes.
Ang
Cao, Justin
Johnson.
CVPR 2023. [Paper] [Project] [Code]
GIFS: Neural Implicit Function for General Shape
Representation.
Jianglong Ye, Yuntao Chen, Naiyan Wang,
Xiaolong Wang.
CVPR 2022. [Paper] [Project] [Code]
Geometry-Consistent Neural Shape Representation with
Implicit Displacement Fields.
Wang Yifan, Lukas Rahmann, Olga
Sorkine-Hornung.
ICLR 2022. [Paper] [Project] [Code]
Neural Volumes: Learning Dynamic Renderable Volumes from
Images.
Stephen Lombardi, Tomas Simon, Jason Saragih,
Gabriel Schwartz, Andreas Lehrmann, Yaser Sheikh.
TOG 2019. [Paper] [Code]
DeepSDF: Learning Continuous Signed Distance Functions
for Shape Representation.
eong Joon Park, Peter
Florence, Julian Straub, Richard Newcombe, Steven Lovegrove.
CVPR 2019. [Paper]
[Code]
Occupancy Networks: Learning 3D Reconstruction in
Function Space.
Lars Mescheder, Michael Oechsle,
Michael Niemeyer, Sebastian Nowozin, Andreas Geiger.
CVPR 2019.
[Paper] [Project]
[Code]
Inverse rendering is to infer underlying intrinsic components of a scene from rendered 2D images. These properties include shape (surface, depth, normal), material (albedo, reflectivity, shininess), and lighting (direction, intensity), which can be further used to render photorealistic images.
NeRFactor: Neural Factorization of Shape and Reflectance
Under an Unknown Illumination.
Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul Debevec, William T. Freeman, Jonathan T. Barron.
SIGGRAPH
Asia 2021. [Paper] [Project]
[Code]
Extracting Triangular 3D Models, Materials, and Lighting
From Images.
Jacob
Munkberg, Jon
Hasselgren, Tianchang
Shen, Jun Gao, Wenzheng Chen, Alex Evans, Thomas
Müller, Sanja
Fidler.
CVPR 2022. [Paper] [Code] [Project]
Modeling Indirect Illumination for Inverse
Rendering.
Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan
Fu, Rongfei Jia, Xiaowei Zhou.
CVPR 2022. [Paper]
IRISformer: Dense Vision Transformers for Single-Image
Inverse Rendering in Indoor Scenes.
Rui Zhu, Zhengqin
Li, Janarbek Matai, Fatih Porikli, Manmohan Chandraker.
CVPR
2022. [Paper]
De-rendering 3D Objects in the Wild.
Felix Wimbauer, Shangzhe Wu, Christian Rupprecht.
CVPR 2022. [Paper] [Project]
[Code]
GAN2X: Non-Lambertian Inverse Rendering of Image
GANs.
Xingang
Pan, Ayush Tewari, Lingjie Liu, Christian
Theobalt.
3DV 2022. [Paper] [Project]
PhySG: Inverse Rendering with Spherical Gaussians for
Physics-based Material Editing and Relighting.
Kai
Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, Noah Snavely.
CVPR 2021. [Paper] [Project]
Unified Shape and SVBRDF Recovery using Differentiable
Monte Carlo Rendering.
Fujun Luan, Shuang Zhao, Kavita Bala, Zhao Dong.
EGSR 2021. [Paper]
[Project]
[Video]
Invertible Neural BRDF for Object Inverse
Rendering.
Zhe Chen, Shohei Nobuhara, Ko
Nishino.
ECCV 2020. [Paper] [Code]
Polarimetric Multi-View Inverse Rendering.
Jinyu Zhao, Yusuke Monno, Masatoshi Okutomi.
ECCV 2020. [Paper]
Inverse Rendering for Complex Indoor Scenes: Shape,
Spatially-Varying Lighting and SVBRDF From a Single Image.
Zhengqin
Li, Mohammad
Shafiei, Ravi
Ramamoorthi, Kalyan
Sunkavalli, Manmohan
Chandraker.
CVPR 2020.[Paper]
[Project]
[Code]
DRWR: A Differentiable Renderer without Rendering for
Unsupervised 3D Structure Learning from Silhouette Images.
Zhizhong Han, Chao Chen, Yu-Shen Liu, Matthias Zwicker.
ICML 2020. [Paper]
Learning to Predict 3D Objects with an
Interpolation-based Differentiable Renderer.
Wenzheng
Chen, Jun Gao, Huan Ling, Edward J. Smith, Jaakko Lehtinen, Alec
Jacobson, Sanja Fidler.
NeurIPS 2019. [Paper] [Code]
InverseRenderNet: Learning Single Image Inverse
Rendering.
Ye Yu, William A. P. Smith.
CVPR
2019. [Paper]
[Code] [IIW
Dataset]
Hybrid Neural Fusion for Full-frame Video
Stabilization.
Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang, Yung-Yu Chuang, Jia-Bin Huang.
ICCV 2021. [Paper] [Code]
Neural Lumigraph Rendering.
Petr
Kellnhofer, Lars Jebe, Andrew Jones, Ryan Spicer, Kari Pulli, Gordon
Wetzstein.
CVPR 2021. [Paper] [Project]
[Data]
Neural Re-Rendering of Humans from a Single
Image.
Kripasindhu Sarkar, Dushyant Mehta, Weipeng Xu,
Vladislav Golyanik, Christian Theobalt.
ECCV 2020. [Paper]
Neural Rerendering in the Wild.
Moustafa
Meshry, Dan B Goldman, Sameh Khamis, Hugues Hoppe, Rohit Pandey, Noah
Snavely, Ricardo Martin-Brualla.
CVPR 2019. [Paper]
Revealing Scenes by Inverting Structure from Motion
Reconstructions.
Francesco Pittaluga, Sanjeev J.
Koppal, Sing Bing Kang, Sudipta N. Sinha.
CVPR 2019. [Paper]
Summary of popular 3D-aware image synthesis datasets.
The images are rendered or collected according to different experimental settings, such as Synthetic-NeRF dataset, the DTU dataset, and the Tanks and Temples dataset for general purposes, the crowded Phototourism dataset for varying lighting conditions, the Blender Forward Facing (BLEFF) dataset to benchmark camera parameter estimation and novel view synthesis quality, and the San Francisco Alamo Square Dataset for large-scale scenes.
Examples of multi-view image datasets.
dataset | published in | # scene | # samples per scene | range (m × m) | resolution | keyword |
---|---|---|---|---|---|---|
DeepVoxels | CVPR 2019 | 4 simple objects | 479 / 1,000 | \ | 512 × 512 | synthetic, 360 degree |
NeRF Synthetics | ECCV 2020 | 8 complex objects | 100 / 200 | \ | 800 ×800 | synthetic, 360 degree |
NeRF Captured | ECCV 2020 | 8 complex scenes | 20-62 | a few | 1,008 × 756 | real, forward-facing |
DTU | CVPR 2014 | 124 scenes | 49 or 64 | a few to thousand | 1,600 × 1,200 | often used in few-views |
Tanks and Temples | CVPR 2015 | 14 objects and scenes | 4,395 - 21,871 | dozen to thousand | 8-megapixel | real, large-scale |
Phototourism | IJCV 2021 | 6 landmarks | 763-2,000 | dozen to thousand | 564-1,417 megapixel | varying illumination |
Alamo Square | CVPR 2022 | San Francisco | 2,818,745 | 570 × 960 | 1,200 × 900 | real, large-scale |
Summary of popular single-view image datasets organized by their major categories and sorted by their popularity.
dataset | year | category | # samples | resolution | keyword |
---|---|---|---|---|---|
FFHQ | CVPR 2019 | Human Face | 70k | 1024 × 1024 | single simple-shape |
AFHQ | CVPR 2020 | Cat, Dog, and Wildlife | 15k | 512 × 512 | single simple-shape |
CompCars | CVPR 2015 | Real Car | 136K | 256 × 256 | single simple-shape |
CARLA | CoRL 2017 | Synthetic Car | 10k | 128 × 128 | single simple-shape |
CLEVR | CVPR 2017 | Objects | 100k | 256 × 256 | multiple, simple-shape |
LSUN | 2015 | Bedroom | 300K | 256 × 256 | single, simple-shape |
CelebA | ICCV 2015 | Human Face | 200k | 178 × 218 | single simple-shape |
CelebA-HQ | ICLR 2018 | Human Face | 30k | 1024 × 1024 | single, simple-shape |
MetFaces | NeurIPS 2020 | Art Face | 1336 | 1024 × 1024 | single, simple-shape |
M-Plants | NeurIPS 2022 | Variable-Shape | 141,824 | 256 × 256 | single, variable-shape |
M-Food | NeurIPS 2022 | Variable-Shape | 25,472 | 256 × 256 | single, variable-shape |
If this repository benefits your research, please consider citing our paper.
@inproceedings{xia2023survey,
title={A Survey on Deep Generative 3D-aware Image Synthesis},
author={Xia, Weihao and Xue, Jing-Hao},
booktitle={ACM Computing Surveys (CSUR)},
year={2023}
}
This
work is licensed under a
Creative
Commons Attribution 4.0 International License.